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A sound wave propagating in an inhomogeneous duct consisting of two semi-infinite
uniform ducts with a smooth transition region in between and which carries a steady
flow is considered. The duct walls may be rigid or compliant. For an irrotational
sound wave it is shown that the three properties of the title are closely related, such
that the validity of any two implies the validity of the third. Furthermore it is shown
that the three properties are fulfilled for lossless locally reacting duct walls provided
the impedance varies at most continuously. For piecewise-continuous wall properties
edge conditions are essential. By an analytic continuation argument it is shown that
reciprocity remains true for walls with loss. For rotational flow, energy conservation
theorems have been derived only with the help of additional potential-like variables.
The inter-relation between the three properties remains valid if one considers these
additional variables to be known. If only the basic gasdynamic variables in both half-
ducts are known, one cannot formulate an energy conservation equation; however,
reciprocity is fulfilled.

1. Introduction
The equations which govern sound propagation in flows are so complicated that

analytic solutions exist only for the very simplest examples. Therefore there is much
interest in global properties of the sound waves which are often of help in the
comprehension of the solutions and offer secondly a valuable check in the assessment
of numerical solutions. These properties are such that some of them, like conservation
or symmetry principles, refer to a single solution and others like Babinet’s principle
or reciprocity with respect to interchange of source and observer relate two different
solutions. Properties of one solution are, both algebraically and conceptually, simpler
than properties of two solutions. The question of whether a given physical system
conserves energy is a fundamental one and usually easy to decide. The same is true
concerning time-reversal invariance. The situation concerning reciprocity is rather
different. I have no clear physical understanding of the meaning of reciprocity. So
it seems that the easiest explanation of the reciprocity property is obtained if one
can relate it to energy conservation and time-reversal invariance. Relations between
these properties have also been studied e.g. by Bojarsky (1983), Wapenaar (1994),
Wapenaar & Grimbergen (1996) and Godin (1997) and in further papers quoted
therein.

The problem of sound propagation in a non-uniform duct is important and seems
very well suited to illustrate these relations. There are, for a given frequency, only a
finite number of energy carrying modes and the scattering process can be described
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by a finite matrix, namely the scattering matrix. The three properties mentioned above
can then be converted to matrix equations and the derivation of these relations is the
main goal of this paper. It is obvious that these equations are such that the validity
of two of them implies the validity of the third. Because of their importance in the
applications, we also consider walls with losses and describe the modifications which
occur. In the first part (§ 2) we assume a potential flow in the duct. We can then base
our arguments on the Blokhintzev energy equation. In the seond part we assume
a rotational flow in the duct. There, the energy equation contains potentials. Then
modifications are required, such that only the reciprocity relation remains valid.

The configuration which we consider consists of two three-dimensional semi-infinite
uniform ducts with arbitrary cross-sections which are connected by a smooth transi-
tion region. The walls may be rigid or compliant. We show that the relations which
were derived before only for rigid walls or for compliant walls without mean flow
can be extended to ducts with compliant walls and with mean flow. During the
main part of this paper we assume that the walls are lossless, because of the much
more powerful methods which are available then. Of course energy conservation and
time-reversal invariance require lossless walls. Often, and that is the only situation
which we will consider, one can include losses by assuming that material properties
which are real for a lossless situation become complex. Then the principle of analytic
continuation allows one to infer from the validity of an analytic equation for all real
values its validity for complex values. The mathematical methods which we use are
based on the scattering matrix formulation, because the interdependence of the three
properties is easiest to visualize there. We will however also show that the vanishing
of an antisymmetric bilinear expression, which is often called self-adjointness and
which is usually used to show reciprocity in free space, see e.g. Pierce (1981), or in
ducts without flow by Eversman (1976) and Cho (1980) is actually a disguised energy
conservation statement, and therefore easy to obtain, once energy conservation and
time-reversal invariance are available.

In the configuration with two semi-infinite ducts there are the infinite duct modes
in both half-ducts and relations between the modal amplitudes in both half-ducts
are obtained from the energy conservation and from the reciprocity principle. They
have to be fulfilled exactly and they therefore provide a valuable check for numerical
computations. In physical applications one often considers walls with losses. The
reciprocity relation, which remains valid, is therefore often of more significance than
the energy conservation theorem with its restricted validity. Because of their close
connection it seems appropriate however to consider both principles simultaneously.

In the first part we consider irrotational sound waves in ducts with flow. This
problem has recently been studied using the method of multiple scales by Rienstra
(1999). There one has the Blokhintzev energy equation. This equation is a local one
which is converted to a global one of modal energy conservation. This can be achieved
for rigid walls or for compliant walls if the mean flow vanishes at the wall or if the
wall impedance varies continuously. For discontinuous liner properties, the validity
of modal energy conservation depends on the edge conditions. Various conditions
in the range from finite liner displacements to a Kutta condition have been used in
the literature, see e.g. Koch & Möhring (1983), Möhring & Eversman (1982), Howe
(1998). Then the inter-relation between energy conservation, time-reversal invariance
and reciprocity can be discussed. As the time-reversal invariance requires the reversal
of the flow velocity, there is a reciprocity with respect to an interchange of source
and observer if at the same time the flow velocity is reversed. The validity of such
a theorem was apparently first proved for a uniform flow velocity by Lyamshev
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(1961) and for potential flows to first order in Mach number by Howe (1975) and for
arbitrary Mach number in Möhring (1978).

Then we consider rotational flow. Sound waves propagating in such a flow are
also rotational. A velocity potential does not exist for them. This implies also that
there is a coupling between acoustical and hydrodynamic modes. Therefore both
have usually to be taken into acount. Several differential energy conservation theo-
rems have been derived by Möhring (1970), Andrews & McIntyre (1978), and Godin
(1996b). They are not formulated in the primitive fluid dynamic variables, i.e. particle
velocity, pressure and density, but make use of additional quantities. Möhring (1970)
uses Clebsch potentials while particle displacements in a mixed Eulerian–Lagrangian
description occur in Andrews & McIntyre (1978) and Godin (1996b). The last two
works consider the much more general problem of waves in an arbitrary flow of a
compressible heavy fluid in an inhomogeneous gravity field. In primitive variables
alone, only energy balance equations have been derived by e.g. Morfey (1967, 1971),
Fuchs (1969) and Myers (1991). They involve energy sources and state a balance
between the acoustic energy generated in some region by the sources and that leaving
it through its surface. The applications which we have in mind however require energy
conservation without sources. Apparently contradicting statements have been made
in this case. While in Möhring (1978) it has been wtated that global energy conserva-
tion and reciprocity is not fullfilled in ducts with rotational mean flow, global energy
conservation and reciprocity are claimed to be valid in arbitrary rotational flow by
Godin (1996a, b). Therefore it seems useful to reconsider the situation. One can derive
the result that the energy fluxes in both half-ducts cancel, under the same conditions
as in the irrotational case, i.e. for rigid or compliant lossless walls provided the wall
properties change continuously. Then total energy conservation and reciprocity seem
to be fulfilled. However, the quantities contain the Clebsch potentials or the particle
displacements respectively. The conflicting statements originate from a different as-
sessment of this fact. While Godin (1996a, b) considers the particle displacements as
observable quantities, Möhring (1978) notes that the Clebsch potentials – and also the
particle displacements – in both half-ducts cannot be determined from the primitive
variables in the respective half-ducts, but require for their determination knowledge
of the flow-field in the whole duct. Therefore a relation between the primitive gasdy-
namic variables in both half-ducts is not obtained from the energy and reciprocity
theorem. A reconsideration of the situation shows that this is actually true for the
energy conservation theorem. It is however possible to select the Clebsch potentials
in such a manner that a reciprocity relation formulated in terms of the primitive
variables holds. This leads to the somewhat strange situation that time-reversal in-
variance and reciprocity are fulfilled but not energy conservation. It is closely related
to the non-uniqueness of the Clebsch potentials.

2. Irrotational sound waves
We consider a duct carrying a steady potential flow of an ideal lossless gas of

velocity v0(x), density ρ0(x), pressure p0(x) and speed of sound a0(x). We assume that
the duct consists of two uniform sections which are connected in |x| < xt by a smooth
transition region (figure 1) and that all flow quantities are constant in the uniform
sections. The walls may be rigid or compliant, but we assume that the wall properties
are also constant in the uniform duct sections |x| > xt. Additionally we consider a
sound wave in the duct, which is described by an acoustic potential φ, where the
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Figure 1. Schematic sketch of the non-uniform duct with the control surface.

particle velocity v, and the pressure p, and density ρ are given by

v = ∇φ, p = −ρ0

Dφ

Dt
, ρ = −ρ0

a2
0

Dφ

Dt
with

D

Dt
=

∂

∂t
+ v0 · ∇. (1)

From the continuity equation, and with the definitions from (1) the governing equation
for φ is found:

∂ρ

∂t
+ ∇ · (ρv0 + ρ0v) = 0. (2)

On multiplying (2) with φt the acoustic energy equation is obtained:

∂w(ψ)

∂t
+∇ ·U (ψ)=0 with w=

ρ0

2
v2+

p2

2ρ0a0
2

+
v0 · vp
a0

2
, U=−φt(ρ0v + ρv0). (3)

Here ψ denotes a vector which contains all acoustic quantities v, p, ρ, φ, . . . . It seems
interesting that the quantities in (1) are also well defined if the mean flow is not
irrotational and (2), (3) are valid in that case too, if the unperturbed quantities are
independent of t. In this situation (3) has no obvious physical meaning, but it might
be suitable as a test case for numerical schemes. Instead of the isentropic Euler
equations, v and p then fulfil the equation

Dv

Dt
+ v · ∇v0 + ∇ 1

ρ0

p = v × (∇× v0)

with an unphysical additional vorticity term on the right-hand side. Furthermore we
consider harmonic time dependence such that all sound quantities are proportional to
e−iωt, where the physical quantities are the real parts, i.e. ψ → 1

2
(ψ + ψ∗), and where

ψ∗ denotes the conjugate complex of ψ. It is convenient to introduce in addition to
U (ψ) the bilinear expression

U (ψ1, ψ2) = 1
4
(U (ψ1 + ψ2)−U (ψ1 − ψ2))

= − 1
2
(φ1t(ρ0v2 + ρ2v0) + φ2t(ρ0v1 + ρ1v0)) (4)

and a similar one for w. We will always write the two arguments explicitly, if we
consider the bilinear expression. U with one argument or without an argument refers
to the energy flux U (ψ) = U (ψ, ψ). The same is true for w or for components of U .
Then also

∂w(ψ1, ψ2)

∂t
+ ∇ ·U (ψ1, ψ2) = 0
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and for the mean energy U (ψ) = 1
2
U (ψ, ψ∗) with ψ1 = ψ and ψ2 = ψ∗ the equation

∇ ·U (ψ, ψ∗) = 0

is obtained as w(ψ, ψ∗) is independent of t for harmonic time dependence. Let
us assume that the duct walls are compliant and that the position vectors of the
undisplaced and displaced duct walls are described by

x = xw(x, σ), x = xw(x, σ) + η(t, x, σ)n

where σ is a parameter on the curve obtained by the cross-section of the duct with the
plane x = const. We assume that the duct is uniform for |x| > xt, i.e. xw is independent
of x there. The variable η denotes the normal displacement of the perturbed duct wall.
Furthermore a linear relation between the wall pressure and the wall displacement

p(t, xw) = L(xw) η(t, xw) (5)

with an impedance L(xw), which may depend on the wall position xw , is assumed.
L should be constant in the uniform duct region |x| > xt. The boundary condition
which expresses the fact that the wall consists for all times of the same fluid particles
was derived by Myers (1980), namely

Dη

Dt
= n · (∇φ+ ηn · ∇v0)|x=xw

(6)

where it is assumed that the unperturbed velocity is in the direction of the unperturbed
wall n · v0 = 0. If the walls are purely mass- or spring-like the impedances L are
real. Losses can be included if one considers complex impedances. As the available
mathematical methods are much more powerful for lossless systems, we will consider
these. Some of the results obtained for lossless systems, but by no means all, can then
by an analytic continuation argument be carried over from real values of the L to
complex values. Although such an argument, may seem weak, it at least gives a hint
of what to expect for walls with losses and how to derive the solution eventually by
an independent argument.

We now integrate the energy equation (3) over the control surface of figure 1. (For
two-dimensional ducts integration in the spanwise direction can be omitted.) The
integrals over the duct cross-section at xl and xr are in the uniform duct section. We
then obtain ∫

x=xr

U1(ψ) dA−
∫
x=xl

U1(ψ) dA+

∫
Wall

U (ψ) · n dA = 0 (7)

where the overbar denotes the time average. With (3) the energy flux into the wall is

−Ū · n = ρ0φtn · ∇φ

= ρ0φt

(
Dη

Dt
− ηn · (n · ∇)v0

)
= ρ0

Dφtη

Dt
− ρ0η

Dφt
Dt
− ρ0φtηn · (n · ∇)v0

= ρ0v0 · ∇φtη + ηpt − ρ0φtηn · (n · ∇)v0 = ∇ ·φtηρ0v0 − n · (n · ∇)ρ0φtηv0,

where the pressure has been introduced using (1) and use has been made of the
fact that the mean of a time derivative vanishes. The same argument leads, with the
impedance relation (5), to a vanishing of the pressure-containing term in the last but
one of the above expressions. The last equality is obtained with ∇ · ρ0v0 = 0 and with
the vanishing of the normal velocity v0 · n = 0 at the wall. This can be written as a
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double vector product, finally giving

Ū · n = −n · (∇× (n× φtηρ0v0)). (8)

Originally the ∇-operator did not act on the n-factor in the vector product, but it is
easy to check that there are no additional contributions if one applies it to that factor
too.

If the acoustic quantities at the duct walls are continuous one can use Stokes’
theorem to tranform the surface integral over the duct walls in (7) with the integrand
taken from (8) into a line integral over its boundary. In the case considered here,
the boundary consists of two curves at the cross-sections of the duct with the planes
x = xl and x = xr , and one obtains therefore two line integrals over these curves. If
one introduces t as the (right-handed) tangential vector of these curves, one obtains∫

Wall

Ū · n dA =

∮
x=xr

(t × n) ·φtηρ0v0 ds+

∮
x=xl

(t × n) ·φtηρ0v0 ds

=

∮
x=xr

φtηρ0v0 ds · nd +

∮
x=xl

φtηρ0v0 ds · nd. (9)

Because of the right-handedness, the vectors t at x = xl and x = xr are in opposite
directions. Therefore nd = t × n denotes the outer normal in the respective uniform
duct sections. Then from (7) and (9) a difference over two contributions from x = xl
and x = xr is obtained:

Utot(ψ)|x=xr −Utot(ψ)|x=xl = 0 with Utot(ψ) =

∫
U1(ψ) dA−

∮
φtηρ0u0 ds. (10)

Energy conservation states that the mean of the total energy flux

Utot(ψ, ψ
∗)|x=xr = Utot(ψ, ψ

∗)|x=xl (11)

is independent of the position considered. Here as in (4), we have used the corre-
sponding bilinear expression

Utot(ψ1, ψ2) =

∫
U1(ψ1, ψ2) dA− 1

2

∮
(φ1tη2 + φ2tη1)ρ0u0 ds. (12)

If the acoustic quantities are only piecewise continous Stokes’ theorem can be
applied to the continuous sections. The most important case is a finite length liner
from x = x0 to x = x1 in an otherwise rigid walled duct. Then the surface integral
over the duct walls does not depend on xl and xr if x0 and x1 are between xl and xr .
Then instead of (11)

Utot(ψ)|x=xr −Utot(ψ)|x=xl =

∮
x=x1

φtηρ0v0 ds · nd +

∮
x=x0

φtηρ0v0 ds · nd. (13)

There is no energy conservation, if the line integrals of (13) differ from zero. It is
obvious that they vanish if the mean flow velocity v0 vanishes at x0 and x1. They
would also vanish if the liner displacements vanish at the edges of the liner. It is
not very clear which edge conditions are physically appropriate in this situation. In
Koch & Möhring (1983) it has been shown that ambiguities originating from various
possible edge conditions arise also in the special case of a finite length uniform liner
in a uniform duct with uniform flow. There it was possible to require vanishing
displacement at the edge. This would again lead to energy conservation. This is in
contrast to other edge conditions studied in Koch & Möhring (1983) which would not
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show energy conservation. Further research is required to identify physically realistic
edge conditions.

Let us now return to a situation with modal energy conservation (11). We evaluate
Utot in the uniform duct section. There we can write all sound field quantities as a
superposition of the uniform duct modes

ψν = Ψν(y) ei(kνx−ωt),

some from the upstream and some from the downstream uniform sections. Then

ψ =
∑
ν

AνΨν(y) ei(kνx−ωt) (14)

and from (11)

Utot(ψ, ψ
∗) =

∑
ν,µ

AνA
∗
µUtot(Ψν,Ψ

∗
µ )ei(kν−kµ)xl,r (15)

where xl,r denotes the x-coordinate of the respective integration surface, i.e. xl for
modes propagating in the left half and xr for modes in the right half, and the
summation is only over modes propagating in the considered half-duct. This has to
be independent of xl and xr . So the total interaction energy flux Utot(Ψν,Ψ

∗
µ ) has

to vanish if kν 6= kµ. If there are several modes having the same kν one can always
choose them to be orthogonal to each other. So one has to have

Utot(Ψν,Ψ
∗
µ ) = uν δνµ (16)

with some real constants uν . Here δνµ denotes the Kronecker symbol which vanishes
for ν 6= µ and is equal to 1 otherwise. This is a kind of orthogonality for the modes.
We have derived it for real L. We now consider the cut-on modes having real kν .
It is easy to check that the differential equation for the mode shape function of
the potential Φν(y), which is obtained from (2), is real for real kν and real ω. The
boundary conditions which are obtained from (5), (6) are also real for lossless walls,
i.e. for real L. Therefore the mode shape functions of the potential Φν(y) are also real
for lossless walls. One can then write Utot(Ψν,Ψ

∗
µ ) = Utot(Φν, Φµ) and therefore from

(15)

Utot(ψ, ψ
∗) =

∑
ν

AνA
∗
νUtot(Φν, Φν) (17)

as the Φν are real. Here one can apply the analytic continuation argument. Equations
(17) and (12) show that Utot is an analytic function of Φν and therefore also of the L.
Let us illustrate this in more detail for a frequency such that there are one upstream
and one downstream propagating mode in both uniform half-ducts. An incident mode
Φ1 from the left would then generate a reflected mode R Φ2 in the left half-duct and
a transmitted mode T Φ3 in the right half-duct. Then from (17)

Utot(Φ1, Φ1) + RR∗Utot(Φ2, Φ2) = TT ∗Utot(Φ3, Φ3). (18)

This also explains Rienstra’s (1999) complete integration of the governing equations
for sound propagation in slowly varying ducts. Rienstra’s multiple scales argument
shows that there is no reflected mode generated, R = 0. Therefore there is only one
propagating mode. For lossless walls the total modal energy flux has to be con-
stant and this determines the modal amplitude. This agrees with Rienstra’s principal
equation (4.10), obtained by him as solvability condition for the second-order approx-
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imation.† An analytic continuation to walls with loss is possible if one uses Rienstra’s
result, that the transmission coefficient T is real.

We now return to lossless walls. Then the modes with positive uν have a positive
outgoing energy flux. We denote them as ψ(o)

ν with wavenumber k(o)
ν and energy flux

u(o)
ν and the incoming modes with negative energy flux are denoted similarly by ψ(i)

ν ,
k(i)
ν , and −u(i)

ν . Both energy flux constants u(o,i)
ν are then positive. The cut-off modes

with complex kν have a vanishing energy flux. We consider the sound field generated
by one incident acoustic mode ψ(i)

ν . The sound field in the uniform duct section will
then additionally consist of outgoing modes ψ(o)

µ of an amplitude sνµ, i.e.

ψ = ψ(i)
ν +

∑
µ

sνµψ
(o)
µ

= Ψ (i)
ν (y) exp (i(k(i)

ν x− ωt)) +
∑
µ

sνµΨ
(o)
µ (y) exp (i(k(o)

µ x− ωt)). (19)

The matrix sνµ is called the scattering matrix. Its determination is usually the main
goal of numerical computations. Inserting this equation into the energy equation (15)
for an incident mode ν and an incident mode µ, with the normalization constants u(i)

ν

and u(o)
ν from (16) results in

−u(i)
ν δνµ +

∑
λ

sνλu
(o)
λ s
∗
µλ = 0. (20)

The explicit occurrence of contributions from both half-ducts in equation (11) implies
that the summation in equation (20) extends over all cut-on modes. The scattering
matrix formed with the cut-on modes only is finite. This matrix is unitary if the modes
are normalized such that the energy flux constants u(i)

ν and u(o)
ν are unity. (In matrix

notation SS∗T = I with S = (sνµ). Here S∗ denotes the conjugate complex of S , ST

its transpose, and I the identity matrix.)
Let us now consider the time-reversal properties. Equation (2) shows that a substi-

tution t → −t leads to a solution of the same equation with the mean flow velocity
reversed, v0 → −v0. Reversing the time leads to a solution of the original equation
of the form of (14) if one takes additionally the conjugate complex. As time reversal
also reverses the energy flux, we find that every incoming mode is converted to an
outgoing mode. We assume that the mode numbers have been chosen such that the
νth incoming mode is converted to the νth outgoing one. We then obtain from the
solution (19) of the original duct

ψ = Ψ (o)
µ (−v0) exp (i(k(o)

µ (−v0)x− ωt)) +
∑
λ

s∗µλΨ
(i)
λ (−v0) exp (i(k(i)

λ (−v0)x− ωt)) (21)

a solution of the duct with reversed flow, provided

Ψ (i,o)
µ (−v0) = Ψ (o,i)

µ

∗
, k(i,o)

µ (−v0) = −k(o,i)
µ

∗
. (22)

This solution contains only one outgoing mode. We obtain the solution which contains
all outgoing modes with the correct amplitudes if we multiply equation (21) with the
scattering matrix elements sνµ(−v0) of the reversed flow and sum over all cut-on

† The comparison shows, that Rienstra’s coefficient σ2 is a complete square, i.e. with Rienstra’s
notation σ2 = (C0µ/ω + (U0/C0)(1 − U0µ/ω))2, a square root is therefore not needed in the
determination of σ.
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modes. Therefore

ψ̃ =
∑
µ

sνµ(−v0)Ψ
(o)
µ (y) exp (i(k(o)

µ x− ωt)) +
∑
λ,µ

sνµ(−v0)s
∗
µλΨ

(i)
λ (y) exp (i(k(i)

λ x− ωt))

has the same outgoing cut-on modes as the sound field generated from the incident
duct mode ν. Therefore ∑

µ

sνµ(−v0)s
∗
µλ = δνλ. (23)

(S(−v0)S
∗ = I for normalized modes.) This equation is a reformulation of the time-

reversal invariance in terms of the scattering matrix. If one now multiplies (20) with
sκµ(−v0) and sums over all κ belonging to cut-on modes, one obtains with (23)

−u(i)
ν sκν(−v0) + sνκu

(o)
κ = 0. (24)

(S(−v0) = ST for normalized modes.) This is the reciprocity relation. If the modes
are normalized to unit mean energy flux, the transpose of the scattering matrix is
equal to the scattering matrix of the reversed flow. It is obvious that two of the
three relations (20), (23), (24) imply the third. Notice however, that (20), (23) are not
analytic functions of their elements; (24) is analytic. Therefore the validity of (24) for
real wall impedances also implies the validity of (24) for complex wall impedances.
Reciprocity is not restricted to lossless walls.

Usually reciprocity is derived from the symmetry or self-adjointness of the wave
operator. A bilinear expression with vanishing divergence is derived. This bilinear ex-
pression is very similar to the interaction energy flux; however, it is not symmetric like
the interaction energy flux but antisymmetric. Here we show that the reciprocity rela-
tion can also be derived directly from the symmetric interaction energy equation using
the time invariance. We observe that the time-reversed solution ψ(−) = ψ(−v0)|t→−t
from (19) has a time dependence proportional to eiωt. This solution and the solution
from (19) then have an interaction energy flux with vanishing divergence, i.e.

∇ ·U (ψ, ψ(−)) = 0 and Utot(ψ, ψ
(−))|x=xl = Utot(ψ, ψ

(−))|x=xr . (25)

Inserting the solution from (19) and from the same solution to the reversed flow leads
with (22) and the mode orthogonality (16) immediately to

−u(i)
ν sµν(−v0) + sνµu

(o)
µ = 0,

i.e. the reciprocity relation (24). So it seems that the usual antisymmetric bilinear
relation is just a reformulation of the symmetric interaction energy equation using
time-reversal invariance.

3. Rotational sound waves
3.1. Clebsch potentials

A sheared flow in a duct is not irrotational. Sound waves propagating in such a flow
therefore also carry vorticity. A velocity potential does not exist for them. The energy
conservation relations which have been derived use additional auxiliary variables,
namely Clebsch potentials or particle displacements. Let us recapitulate briefly the
Clebsch potential formulation from Möhring (1973). Introducing φ0, η0, α0, and β0

for the mean flow one has with the mean enthalpy h0 and entropy s0 the differential
relation

v0 · dx− (h0 + 1
2
v2

0) dt = dφ0 + s0 dη0 + α0 dβ0 (26)
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which means of course

v0 = ∇φ0 + s0∇η0 + α0∇β0, (h0 + 1
2
v2

0) = −∂φ0

∂t
− s0 ∂η0

∂t
− α0

∂β0

∂t
.

The potentials obey the equations

Dη0

Dt
= −T0,

Dα0

Dt
= 0,

Dβ0

Dt
= 0.

For steady flows one may assume that only β0 depends on the time t, namely
β0 = B(x)− t. Similarly, Clebsch potentials for the linearized flow with

v · dx− (h+ v0 · v) dt = dφ+ s0 dη + s dη0 + α0 dβ + α dβ0 (27)

and
Dη

Dt
+ v · ∇η0 = −T , Dα

Dt
+ v · ∇α0 = 0,

Dβ

Dt
+ v · ∇β0 = 0 (28)

are introduced. Then one can derive an energy equation (3) with an energy flux

U = htot(ρ0v + ρv0)− ρ0(sηt + αβt)v0, htot = h+ v0 · v − α. (29)

The energy flux depends on the Clebsch potentials. The Clebsch potentials are not
uniquely determined, in general there are various energy fluxes and one has some
freedom to choose the most convenient one. In Möhring (1973) it is shown that the
mean energy flux is independent of the choice of the Clebsch potentials of the mean
flow. So it remains to study the influence of the Clebsch potentials of the linearized
flow. From (27) it can be concluded that canonical transformations may be used to
obtain from one set of Clebsch potentials another one. Writing the differential form
(27) with an arbitrary function W = W (s0, α0, β0):

d(φ+ s0η + α0β)− η ds0 + s dη0 − β dα0 + α dβ0

= d(φ+ s0η + α0β +W )−
(
η +

∂W

∂s0

)
ds0 + s dη0

−
(
β +

∂W

∂α0

)
dα0 +

(
α− ∂W

∂β0

)
dβ0,

it can be seen that new Clebsch potentials φ̃, η̃, α̃, β̃ can be used with

η̃ = η +
∂W

∂s0
, β̃ = β +

∂W

∂α0

, α̃ = α− ∂W

∂β0

. (30)

The difference between the two sets of Clebsch potentials describes a ‘pseudo-flow’
with no effect on the primitive gasdynamic variables pressure, density and velocity.
This pseudo-flow leads to a modified energy flux Ũ however. In the special case, that
W depends only on β0, one obtains e.g.

Ũ = U +
∂W

∂β0

(ρ0v + ρv0 + βtρ0v0)

and more complicated expressions in the general case. They lead in general to different
values of the time-averaged energy flux, depending on the choice of W . For each
choice there is conservation of the mean energy flux∮

Ū · dx = 0.
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Making use of the relation

Dhtot
Dt

=
1

ρ0

∂p

∂t

from Möhring (1978), gives, very similarly to (8) for the normal component of the
energy flux into the walls,

Ū · n = n · (∇× (n× htotηρ0v0))

and again the integrals over soft duct walls can be converted into line integrals. For
continuous wall properties, one obtains very similarly to (10)

Utot(ψ)|x=xr = Utot(ψ)|x=xl with Utot(ψ) =

∫
U1(ψ) dA+

∮
htotηkρ0u0 ds (31)

and an equation very similar to (13) for a finite length liner in an otherwise rigid
walled duct. Equation (29) shows that the energy flux contains the Clebsch potentials
and the contributions in the sum of (31) depend on them. So one needs the Clebsch
potentials in the uniform duct sections. They depend on the whole flow field. If they
are known, for lossless walls an energy conservation relation and a reciprocity relation
are obtained, exactly as for irrotational sound waves. The Clebsch potentials in the
uniform duct sections enter into these relations.

3.2. Uniform ducts

Let us now describe the linearized flow and its Clebsch potentials for uniform ducts
in more detail. This seems appropriate, as the presentation in the papers mentioned
previously is mainly restricted to sound waves in two-dimensional ducts and the
relation to the hydrodynamic modes has not been studied there. Because of the
coupling between acoustic and hydrodynamic modes in the duct’s transition region,
the hydrodynamic modes have to be taken into account. So one may write in the
uniform duct

p = pac(x, y) + phy(x, y)

and similarly for all other primitive gasdynamic variables ρ, s, v. Here quantities
with a subscript ac or hy refer to the acoustic or hydrodynamic modes respectively x
denotes the coordinate in the duct’s axial direction, and y a two-dimensional vector in
the cross-sectional plane. Again, harmonic time dependance is assumed throughout.
We exclude unstable mean flow profiles such that pac and phy remain bounded.
Furthermore we assume that the acoustic part can be written as a superposition of
discrete modes

pac =
∑

cνPν(y) exp(i(kνx− ωt)). (32)

Only a finite number of the kν are real, the remaining complex ones describing
exponentially decaying (‘cut-off’) modes. The hydrodynamic modes are such that the
wave numbers contained in phy are different from those in pac, i.e.

〈e−ikνxphy(x, y)〉 = 0, for real acoustic kν, (33)

where the brackets denote a spatial average over the axial coordinate. We do not
however assume that phy possesses a modal expansion similar to (32). In general a
continuous spectrum has to be admitted in the hydrodynamic modes. This can be
shown, at least for rectangular and circular ducts, by Fourier transform methods
using the ideas described in Friedman (1956), pp. 217–250. Finally we require that the
acoustic wavenumbers kν do not give rise to a critical layer, i.e. ω − kνu0(y) 6= 0 for
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all y in the duct crosssection, where u0(y) denotes the mean flow profile; the critical
layers are associated with the hydrodynamic modes.

A set of Clebsch potentials can be obtained from (26), (28). For the mean flow one
easily obtains

η0 = −T0(y)

u0(y)
x, α0 = h0(y) + 1

2
u0(y)2, β0 = x

u0(y)
− t.

The Clebsch potentials of the linearized flow can be obtained from (28). For the
acoustic part one may assume an expansion into a series of discrete modes, i.e. for α

αac =
∑

cνAν(y)ei(kνx−ωt)

and for the Aν

Aν =
1

i(ω − kνu0(y))
vac · ∂α0

∂y
= − 1

ρ0(ω − kνu0(y))2

∂α0

∂y
· ∂Pν
∂y

.

Also from (28) for the hydrodynamic modes

−iωαhy + u0

∂αhy

∂x
= −vhy · ∂α0

∂y
. (34)

On multiplying this equation with e−ikνx, averaging over the axial coordinate and
taking (33) into account, one obtains

〈e−ikνxαhy〉 = 0, (35)

i.e. the very plausible result that αhy does not contain acoustic wavenumbers. The
situation is slightly more complicated for η and β as η0 and β0 are linearly growing
with x. However, assuming

η = x˜̃η + η̃

gives the two equations

D˜̃η

Dt
= v · ∂

∂y

T0(y)

u0(y)
,

Dη̃

Dt
+ u0

˜̃η − uT0(y)

u0(y)
= −T . (36)

Then the acoustic and hydrodynamic parts can be determined as for α and again the
acoustic parts of ˜̃η and η̃ can be found as a superposition of discrete modes and their
hydrodynamic parts do not contain acoustic wavenumbers.

Note that the mode series asumption for the acoustic modes determines the Clebsch
potentials uniquely from the primitive variables and one can verify that this set of
Clebsch potentials fulfils the defining relations (27). The hydrodynamic solutions are
however not uniquely determined from the partial differential equations (34), (36) and
a similar one for β. Furthermore solutions of these equations do not automatically
satisfy (27); they have to be chosen appropriately. This choice is not unique. There
are many possibilities related by the canonical transformations (30). This means e.g.
that there are non-vanishing Clebsch potentials of the type of a hydrodynamic mode
for a vanishing flow, which we called a pseudo-flow.

Now we can determine the energy flux in the duct from (31). We again introduce
an energy flux U (ψ1, ψ2) similar to (4) and obtain from the energy equation that
the temporal average of the total energy flux Utot(ψ, ψ

∗) is independent of the axial
position of the cross-section considered. For a flow with acoustic and hydrodynamic
modes ψ = ψac + ψhy , one obtains

Utot(ψ, ψ
∗) = Utot(ψac, ψ

∗
ac) +Utot(ψhy, ψ

∗
ac) +Utot(ψac, ψ

∗
hy) +Utot(ψhy, ψ

∗
hy).
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As Utot is independent of the axial position, the linearly growing terms ˜̃η and ˜̃η
cannot enter Utot; they have to cancel. For the same reason one can average over all
axial positions. Then because of (33) and (35) the interaction energy flux between the
acoustic and hydrodynamic modes vanishes. Similarly there is no interaction energy
flux between different acoustic modes. We can therefore write for the acoustic field of
(32)

Utot(ψ, ψ
∗) =

∑
cνc
∗
νuν +Utot(ψhy, ψ

∗
hy), with Utot(Ψν,Ψµ

∗) = uν δνµ, (37)

where the modal energy flux can be expressed in terms of the pressure mode shape
function

Utot(ψν, ψ
∗
ν ) =

ω

2ρ0Ω2
ν

[
− ω

Ω2
ν

∂u0

∂y
·Pν ∂Pν

∂y
+

(
Ωνu0

a2
0

+ kν

)
P 2
ν

]
. (38)

Here Ων = ω − kνu0(y). Equation (37) shows that the energy flux depends on the
hydrodynamic modes. As the Clebsch potentials of these modes are not uniquely
determined, the same is true of the energy flux. This is even true in a flow without
hydrodynamic modes, there are non-vanishing Clebsch potentials which we called
pseudo-flow. We are, however, free in an infinite duct without hydrodynamic modes
to assume vanishing Clebsch potentials. Then the energy flux is well defined, and it is
this definition of the energy flux which has been used before in purely acoustic flow
in uniform ducts.

3.3. Transitional ducts

Let us now consider an inhomogeneous duct consisting of two uniform semi-infinite
ducts, which are connected by some transition region similar to the configuration
of figure 1 considered in § 2. We assume now, however, that the mean flow is not
irrotational. Instead of Blokhintsev’s energy equation (3), which is not applicable
for rotational flows, we want to make use of the energy flux (31). We are again
interested in relations between the sound fields in the two semi-infinite ducts. The
energy flux (31) contains the Clebsch potentials and relations derived from it will
generally also contain these potentials. There are two difficulties connected with this
approach. First, the Clebsch potentials are not uniquely determined and secondly the
Clebsch potentials do not belong to the primitive gasdynamic variables. The first
difficulty is a minor one, as one gets relations for every choice of the potentials or one
could eventually determine them uniquely by some additional condition. On the other
hand, we consider the second difficulty a serious one. The sound field is completely
determined by the primitive variables, and one can determine the Clebsch potentials
from them. This is not locally possible however; one has to solve the differential
equations (28). This means that one has to know the primitive variable everywhere
in the duct, i.e. also in the transition region, to determine Clebsch potentials in the
two uniform half-ducts. Assuming this, one can probably derive relations similar to
those of § 2 for potential flows with complications associated with the existence of
hydrodynamic modes and pseudo-flows. The usefulness of such an approach appears
doubtful. We therefore restrict ourselves to relations which do not involve Clebsch
potentials. It may be surprising that such relations exist, but we will show that the
reciprocity relation (24) is also valid in rotational mean flow, the modal energy flux
constants u(i,o)

ν now determined from the well-defined energy flux (37).
To obtain the reciprocity relation, we assume that there are no incoming hydrody-

namic modes: the linear flow is generated by an incoming acoustic mode. Then there
are no hydrodynamic modes in the upstream uniform half-duct: only acoustic modes
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are found there. Then we can determine the Clebsch potentials there as a superpo-
sition of discrete modes. In the downstream half-duct, there will in general also be
hydrodynamic modes which were generated from the incoming sound wave in the
transition region. The same is true for the time-reversed solution ψ(−) = ψ(−v0)|t→−t.
Then we confirm again the validity of (25)

Utot(ψ, ψ
(−))|x=xl = Utot(ψ, ψ

(−))|x=xr . (39)

Now it is important to recognize that the upstream half-duct of the original flow is the
downstream half-duct of the reversed flow. Only one argument in (39), namely ψ(−)

in the originally upstream half-duct and ψ in the originally downstream half-duct,
contains hydrodynamic modes. As we have shown in § 3.2 that the total interac-
tion energy flux between acoustic and hydrodynamic modes vanishes, only acoustic
contributions remain in (39) and (24) is valid again.

Here one has obviously a situation where the relation between the three properties
energy conservation, time-reversal invariance and reciprocity described above does
not hold. Time-reversal invariance and reciprocity are fulfilled but not energy con-
servation. Let us conclude with the remark that the pressure mode shape function is
real for real L and one can write, similar to (17)

Utot(Pν, Pµ) = uν δνµ.

The remark after (24) is relevant and an analytic continuation to complex L is again
possible. Reciprocity is also valid for walls with losses.

4. Conclusion
It has been shown that there is a close relation between energy conservation, time-

reversal invariance and reciprocity with respect to interchange of source and observer
for sound waves propagating in an inhomogeneous duct with rigid or soft walls which
carries a potential flow. The scattering matrix is then finite and the three properties
are translated into matrix relations. It is obvious that these relations are such that
the validity of two of them implies the validity of the third. All three properties
are fulfilled for lossless walls with continuous wall properties and for discontinuous
liner properties if certain edge conditions are fulfilled. It is not very clear which edge
conditions are physically significant. An analytic continuation argument shows that
the reciprocity relation remains true for walls with loss with continuously varying
properties.

For rotational flows there are energy conservation and reciprocity relations which
depend on auxiliary variables, like Clebsch potentials or particle displacements. In
addition a reciprocity relation which depends only on the primitive gasdynamic
variables is also derived.

I am very grateful to W. Eversman from the University of Missouri-Rolla, to S. R.
Rienstra from the TU Eindhoven and to H. Vogel from the Max-Planck-Institut für
Strömungsforschung for helpful hints and discussions.
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